
Acta Materialia 51 (2003) 4357–4365
www.actamat-journals.com

Designing damage-resistant brittle-coating structures:
II. Trilayers

Pedro Miranda a, Antonia Pajares b, Fernando Guiberteau a, Yan Deng c,
Hong Zhao d,1, Brian R. Lawn d,∗

a Departamento de Electro´nica e Ingenierı´a Electromeca´nica, Escuela de Ingenierı´as Industriales, Universidad de Extremadura,
06071 Badajoz, Spain

b Departamento de Fı´sica, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
c Department of Materials and Nuclear Engineering, University of Maryland, College Park, MD 20742-2115, USA

d Department of Materials Science and Engineering, National Institute of Standards and Technology, 100 Bureau Drive,
Gaithersburg, MD 20899-8500, USA

Received 16 January 2003; received in revised form 8 May 2003; accepted 8 May 2003

Abstract

An extension of the FEA-based damage analysis for bilayers in Part I is presented for trilayers consisting of a
functional outer layer on an underlying substrate with an intermediate inner core layer. The inner core layer may be
used to enhance bonding or load support, but is itself vulnerable to subsurface radial cracking (brittle interlayer) or
yield (soft interlayer). A stress analysis is conducted by reducing the trilayer system to an effective bilayer in which
the core layer is regarded as either part of the coating or substrate, depending on the damage interface (i.e. outer/inner
or inner/substrate). The stress solutions are used to determine generic relations for the critical loads to induce radial
cracking or plasticity (or quasiplasticity) in the outer or inner layers, and even in the substrate. A quadratic relationship
between critical load and effective coating thickness is preserved; and strength and hardness of the constituent layers
remain principal, linearly dependent, material parameters. However, dependence on relativeouter/inner layer thicknesses
and elastic moduli are not generally amenable to exact solution, limiting useful explicit relations to radial cracking in
the inner layer. Use of the analysis in constructing design diagrams is again considered.
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1. Introduction

Following Part I for bilayers, we seek to deter-
mine conditions for optimal damage resistance of
trilayers with functional outer layers on inner core
layers, either brittle or plastic, bonded to a com-
pliant or soft substrate. Such systems are especially
representative of dental crowns, where an aesthetic
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but weak outer porcelain layer is supported by a
stiff inner core layer, either a strong ceramic or
hard metal [1–3]—by virtue of load transfer, the
core “shields” both the outer porcelain and under-
lying dentin from the cuspal biting forces [4]. In
hip prostheses, acetabular cups are now being fab-
ricated as ceramic/polymer/metal layer structures,
with successive components providing improved
wear resistance, cushioning and toughness [5]. Tri-
layers offer the benefits of improved damage resist-
ance and durability without compromising func-
tion.

Damage modes in trilayer structures are similar
to those in bilayers, except that now the core layer
as well as the outer layer and substrate is vulner-
able to damage—ceramic cores to fracture [4,6]
and metal cores to yield [6,7]. The roles of relative
layer thickness and elastic mismatch (as well as
other material properties) on stress distributions
within the three layers, and the ensuing critical
conditions for each damage mode, have yet to be
elucidated. Whereas increased elastic mismatch
may be expected to enhance damage initiation
within any given layer, it may also benefit the
structure by ensuring that the damage does not
spread to adjacent layers (containment). Accord-
ingly, designing optimal trilayer structures for spe-
cific applications requires certain compromises. A
sound basis for determining critical conditions for
damage initiation is an essential first step in
achieving this goal.

Explicit relations for critical loads in terms of
the key material and thickness variables are not
available for trilayers. We shall build on the bilayer
analysis in Part I, again using finite element analy-
sis (FEA), to establish functional dependencies for
both ceramic- and metal-based core trilayer sys-
tems. For this purpose, it will be convenient to
reduce the trilayers to “effective bilayers”, regard-
ing the inner support layer as part of either the
coating or the substrate, depending on the location
of the damage mode. In this way, we can carry
over some of the basic relations from Part I. Thus,
the quadratic relationship between critical load and
effective coating thickness for bilayers is pre-
served, although the modulus dependence is some-
what more complex. Attention will be paid to
whether it is better to use a hard metal or a strong

ceramic for the core support layer, a persistent
question in the dental crown community. The
results will be discussed in the context of the
design of trilayers for engineering systems.

2. Stress analysis

2.1. Stress relations

Consider the trilayer system in Fig. 1a, an outer
coating layer (o) of thickness do and modulus Eo

bonded to an inner layer (i) of thickness di and
modulus Ei, all bonded to a thick substrate (s) of
modulus Es, in contact with a sphere of radius r
at load P at the top surface. Following previous
experimental observation, subsurface damage
initiates adjacent to the interlayer interfaces, along
the contact axis. The subsurface modes under con-
sideration here are depicted in Fig. 1a: radial crack-
ing at the bottom surfaces of the inner or outer
layer [4]; and yield at the bottom of the outer layer,
top or bottom surface of the inner layer, or top
surface of the substrate [7]. (As in Part I, we disre-
gard top-surface modes as secondary.) Critical
loads can then be evaluated by equating near-inter-
face tensile or von Mises stresses with material
strength (cracking) or yield stress (plasticity),
respectively.

A principal issue to be examined here is the
dependence of the pertinent stresses at the inter-
layer interfaces on layer thicknesses and moduli.
Following Fig. 1, we consider the inner layer as a
composite part of either the coating or the sub-
strate, depending on whether the damage mode is
located at the o/i or i/s interface. The trilayer is
then effectively reduced to a bilayer. Thus, for
damage immediately adjacent to the o/i interface
(Fig. 1b), the system may be considered as a coat-
ing of effective thickness do and modulus Eo on a
composite substrate of effective modulus E∗

s =
Eifs(Es /Ei,do /di). Such an effective substrate must
produce exactly the same stresses in the outer layer
of the virtual bilayer as the combined i/s sublayers
in the actual trilayer. Then by direct analogy with
the bilayer relation Eq. (1) in Part I, the near-inter-
face stresses in the “effective bilayer” have the
general form
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Fig. 1. Schematic of damage in trilayers with outer layer thickness do and modulus Eo, inner layer thickness di and modulus Ei, on
substrate of modulus Es, from contact at top surface with sphere of radius r at load P. (a) Actual trilayer structure, (b) effective
bilayer structure, treating inner layer as part of substrate, (c) effective bilayer structure, treating inner layer as part of coating.
Principal subsurface damage modes are radial cracking and yield (shaded) immediately adjacent to outer/inner (o/i) and inner/substrate
(i/s) interfaces.

s∗ � (P /d2
o)�∗(Eo /E∗

s ) (1a)

Similarly, for damage adjacent to the i/s interface
(Fig. 1c), the system may be considered as a coat-
ing of “effective thickness” do + di = d and “effec-
tive modulus” E∗

c = Eifc(Eo /Ei,do /di) on a substrate
of modulus Es. In this case the near-interface
stresses in the effective bilayer may be written

s∗ � (P /d2)�∗(E∗
c /Es) (1b)

Complete evaluation of the effective stresses s∗

in Eq. (1a,b) requires knowledge of the corre-
sponding �∗ terms for the effective bilayers. These
terms may be determined from Eq. (2) in Part I.
The effective stresses s∗ in the virtual bilayers may
then be converted to equivalent actual stresses s
in the trilayers by invoking the requirement for
normal stress and tangential strain compatibility
across the layer sections (Appendix A). Then we
may propose stress relations analogous to Eq. (1a)
for damage adjacent to the o/i interface

s � (P /d2
o)�(Eo /E∗

s ) (2a)

� (P /d2
o)�(Eo /Ei,Es /Ei,do /di)

and analogous to Eq. (1b) for damage adjacent to
the i/s interface

s � (P /d2)�(E∗
c /Es) (2b)

� (P /d2)�(Eo /Ei,Es /Ei,do /di)

In this scheme, an explicit quadratic dependence
on layer thickness is retained, but the � modulus
terms are even more complex than their counter-
parts in Part I.

2.2. Finite element validation

FEA is carried out as in Part I [4,7] for the sys-
tem in Fig. 1a. Fig. 2 shows principal normal
stresses s1 and s3 and von Mises shear stresses
s13 = s1�s3 along the contact axis for a represen-
tative ceramic/metal/polymer trilayer in Hertzian
contact: Young’s moduli and Poisson’s ratios Eo =
100 GPa and no = 0.22, Ei = 300 GPa and vi =
0.33, Es = 10 GPa and vs = 0.35; layer thicknesses
do = 1 mm = di; and sphere radius r = 3.18 mm.
Stress distributions are again highly nonlinear
across the section, particularly in the outer layer.
Discontinuities are once more apparent at the inter-
layer interfaces, except for s3.

In accordance with Eq. (2a,b), Fig. 3 plots FEA-
generated o/i stresses so

1, so
3, so

13 and si
13 as a func-

tion of outer layer thickness quantity d�2
o (Fig. 3a)

and i/s stresses si
1, si

3, si
13 and ss

13 as a function
of composite layer thickness d–2 (Fig. 3b) for the
same material system as in Fig. 2. The FEA data
are for thickness ratio do/di = 1 and fixed sphere
radius r = 3.18 mm at contact load P = 25 N. The
solid lines are linear best fits to the data at low P.



4360 P. Miranda et al. / Acta Materialia 51 (2003) 4357–4365

0

1

2

3
-20 10 20-10 0

Outer layer

σ1
σ3

σ13

Inner layer

Substrate

Stress, σ (MPa)

D
ep

th
 b

el
ow

 s
ur

fa
ce

 (
m

m
)

Fig. 2. FEA-generated stresses s1, s3, and s13 along contact
axis, for do/di = 1, r = 3.18 mm, for Eo = 100 GPa, Ei = 300
GPa and Es =10 GPa (no = 0.22, ni = 0.33, ns = 0.35). Nonlinear
stress distributions across section are again apparent, parti-
cularly in outer layer.

Fig. 4 shows plots of so
1 versus P /d2

o at fixed r/do

in Fig. 4a (calculated for varying P), and likewise
si

1 versus P /d2 at fixed r/d in Fig. 4b, indicating
increasing nonlinearities at large P (cf. Fig. 5 in
Part I). Figs. 3 and 4 reaffirm the essential inverse
quadratic dependence of stress on effective coating
thickness for any given material system and near-
linearity of this stress with contact load in the
asymptotic low-P region.

Fig. 5a plots the quantities sd2
o /P = � as func-

tions of Eo/Ei for each o/i stress component, for
Ei = 300 GPa and Es = 10 GPa (no = 0.22, ni =
0.30, ns = 0.30) with do = di = 1 mm, in the linear
region. Fig. 5b likewise plots sd2 /P = � as func-
tions of Ei/Es for each i/s stress component, for Eo

= 100 GPa and Ei = 300 GPa (no = 0.22, ni = 0.22,
ns = 0.30), again with do = di = 1 mm. Note the
similarities in these plots with the corresponding
plot in Fig. 6 of Part I. The heavy solid line through
the si

1 FEA data in Fig. 5b is a fit to the transfor-
med i/s equivalent of the sc

1 stresses in Eq. (2) in
Part I, i.e.

si
1d2 /P � �i

1 � (1 /B)(Ei /E∗
c )log(CE∗

c /Es),

(1 � E∗
c /Es � 100)

(3)
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Fig. 3. FEA-generated stresses s1, s3, and s13 immediately
adjacent to (a) o/i interface as a function of d�2

o , and (b) i/s
interface as function of d�2, for do/di =1, r = 3.18 mm, P =
25 N, Eo = 100 GPa, Ei = 300 GPa and Es = 10 GPa (no = 0.22,
ni = 0.33, ns = 0.35). Note linear responses over data range.

with B = 1.35 and C = 1.0 dimensionless coef-
ficients from Part I and E∗

c = 213 GPa adjusted to
give a best fit. The pre-logarithmic Ei /E∗

c term in
Eq. (3) reflects the requirement that the effective
coating produce the same stress in the substrate of
the virtual bilayer as the combined o/i layers in
the actual trilayer (Appendix A). Equations for the
actual shear stress components at the i/s interface
are more unwieldy and are included in Appendix
A. Fits to these equations are represented as soft
solid lines in Fig. 5b. Analogous equations for the
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Fig. 4. FEA-generated near-interface stress (a) so
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of P /d2
o for specified r/do values, and (b) si
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P /d 2 for specified r/d values. Plots for do /di = 1, r = 3.18
mm, P = 25 N, Eo = 100 GPa, Ei = 300 GPa and Es = 10 GPa
(no = 0.22, ni = 0.33, ns = 0.35). Note nonlinear responses at
higher r/d.

stresses at the o/i interface are subject to greater
inaccuracies (recall strong nonlinearities in the
outer layers in Fig. 2), and are therefore not
included here or in Appendix A. In this case
dashed lines in Fig. 5a are simple spline fits
through the data points.

Values of relative effective modulus E∗
c /Ei

deconvoluted from si
1 FEA data for systems with

different elastic mismatch and thickness ratios are
plotted versus Eo/Ei in Fig. 6a and versus do/d in
Fig. 6b. Solid lines represent an empirically fitted
polynomial function of form similar to the analyti-
cal solution for a free-standing bilayer beam or
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Fig. 5. Stress quantities: (a) sd2
o /P at o/i interface as function

of Eo/Ei, for Ei =300 GPa and Es = 10 GPa (no = 0.22, ni =
0.30, ns = 0.30); and (b) sd2 /P at i/s interface as function of
Ei /Es, for Eo = 100 GPa and Ei = 300 GPa (no = 0.22, ni =
0.22, ns = 0.30). Data points are FEA calculations. In Fig. 5b,
heavy line through s1 data is best fit to Eq. (3); light lines are
fits to shear stress relations in Appendix A. Dashed lines in Fig.
5a are spline fits to the data.

plate in flexural loading [8,9], with adjusted
numerical coefficients:

E∗
c /Ei � {1 � e2d3 � ed(5.66 � 2.18d)}

/{1 � 1.97d � ed[3.69 � 2.18d � d2]}
(4)

where e = Eo /Ei and d = do /di. Departures of the
effective moduli E∗ /Ei from unity increase mono-
tonically with increasing relative outer layer thick-
ness and elastic mismatch.
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in Fig. 1c, (a) as function of Eo/Ei and (b) as function of do/d,
calculated here for d = do + di = 2 mm and Es/Ei=1/700 (no =
0.22, ni = 0.22, ns = 0.30).

3. Critical loads for damage modes

As in Part I, we impose critical stress criteria to
determine threshold load relations for each damage
mode depicted in Fig. 1. Thus, suppose damage
initiates at a critical stress s = scrit at P = Pcrit in
Eq. (2a,b). Then for the o/i interface

Pcrit � scritd2
o /�(Eo /Ei,Es /Ei,do /di) (5)

where scrit is identified with strength S (tensile
stress) or yield stress Y (Mises stress) in the outer
and inner layers:

Pcrit � Po
R, scrit � So, � � �o

1 (6a)

Pcrit � Po
Y, scrit � Yo, � � �o

13 (6b)

Pcrit � Pi
Y↑, scrit � Yi, � � �i

13↑ (6c)

Similarly for the i/s interface

Pcrit � scritd2 /�(Eo /Ei,Es /Ei,do /di) (7)

where scrit is now identified with S (tensile stress)
or yield stress Y (Mises stress) in the inner and
substrate layers:

Pcrit � Pi
R, scrit � Si, � � �i

1 (8a)

Pcrit � Pi
Y↓, scrit � Yi, � � �i

13↓ (8b)

Pcrit � Ps
Y, scrit � Ys, � � �s

13 (8c)

The arrows are used here to distinguish between
yield at the top or bottom inner layer surfaces. In
principle, we may now calculate Pcrit for all six
damage modes represented in Eqs. (5)–(8a–c) (Fig.
1), and thus determine which is most likely to pre-
cipitate failure in any given trilayer structure.

As in Part I, the hardness relation H = 3Y is a
useful adjunct in evaluating the yield stresses in
Eqs. (6a–c) and (8a–c).

4. Discussion

We have identified radial cracking and plasticity
(or quasiplasticity) modes at outer/inner (o/i) and
inner/substrate (i/s) interfaces in trilayer structures.
These modes are in addition to the conventional
cone cracking and plasticity that may occur at the
trilayer top surface in the near-contact region (Part
I) [10]. Each damage mode can be an important
potential source of ultimate failure: radial cracking
is immediately deleterious to strength [10]; and
although yield is arguably innocuous in the short
term, it can lead to subsequent radial cracking in
an outer brittle layer and delamination at the inter-
faces [11]. By considering the trilayers as effective
bilayers in which the inner layer is regarded as
either part of the coating or substrate, we have been
able to demonstrate that the critical loads for each
subsurface damage mode retain explicit linear
dependencies on material strength S or yield stress
Y (or hardness). The critical loads also remain
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quadratically dependent on effective coating layer
thickness do (o/i interface) or d (i/s interface).
However, dependencies on relative layer thick-
nesses do/di, as well as on elastic moduli Eo/Ei and
Es/Ei, are more complex. For these latter depen-
dencies, we have to resort to numerical evaluation
by FEA (Fig. 5). An exception is the critical load
for radial cracking in the inner layer, obtainable
from Eq. (3) in conjunction with Eq. (8a):

Pi
R � BSid2E∗

c /Eilog(CE∗
c /Es),

(1 � E∗
c /Es � 100)

(9)

In conjunction with Eq. (4) for the effective modu-
lus E∗

c , this is a useful relation for all-brittle coat-
ing systems.

In principle, we could construct damage domain
diagrams analogous to those calculated from Eq.
(6) in Fig. 7 of Part I. However, the addition of an
inner core layer substantially increases the number
of plots needed for a full description (from 3 to
6), making such diagrams less practical. We limit
ourselves here to consideration of damage in the
inner core layer. Proper choice of the inner layer
material and its relative thickness can “protect” the
structure by increasing damage thresholds in adjac-
ent weak-outer and compliant-substrate layers.
Such a consideration is particularly relevant to den-
tal crown structures [3] where the core materials
tend to be relatively stiff and therefore especially
vulnerable to damage associated with flexural
stresses from cuspal biting forces [4]. Then com-
paring Eqs. (6c) and (8a) and Eqs. (8b) and (8a),
we may write

Pi
Y↑ /Pi

R � (Yi /Si)(do /d)2(�i
1 /�i

13↑) (10a)

Pi
Y↓ /Pi

R � (Yi /Si)(�i
1 /�i

13↓) (10b)

for any fixed coating thickness d. (Analogous
relations may be written for competing damage
modes in the outer or substrate layers.) If Pi

Y /Pi
R

� 1, core plasticity occurs first; if � 1, core radial
cracking occurs first. Again, the ratio Y/S (or equi-
valently H/S) emerges a useful brittleness index.
Intercomparison of Eqs. (10a) and (10b) enables
us to determine whether plasticity is likely to occur
first at the upper or lower core surface. In the con-
text of dental crowns, an issue of much current
debate is whether it is better to use a metal or cer-

Fig. 7. Design diagram, showing critical loads for (a)
porcelain/Co-alloy/dentin and (b) porcelain/alumina/dentin tri-
layers.

amic support layer. Eq. (10a,b) confirms that for
large Yi/Si (ceramics), core radial cracking is the
favored damage mode; for small Yi/Si (metals),
core yield is favored. In the latter case, yield is
favored at the upper core surface when do/d is
small (enhancing the prospect of ensuing radial
cracking in the outer layer), and conversely at the
lower core surface when do/d is large (enhancing
the prospect of crown detachment from the under-
lying dentin). Note that these qualitative assertions
may be made without any detailed evaluation of
the � terms in Eq. (10a,b).
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Quantitative predictions of the critical loads
Po

R, Po
Y, Pi

Y↑, Pi
R, Pi

Y↓ and Ps
Y in Eqs. (6a–c) and

(8a–c) are plotted in Fig. 7 as a function of relative
layer thickness do/di at fixed d = do + d = 1.5
mm (typical crown thickness) for trilayers with
porcelain outer layers and dentin substrates and
with (a) Co-alloy and (b) alumina cores, using
material parameters from Table 1 of Part I. Data
points correspond to evaluations directly from
FEA, solid lines through are predictions from Eqs.
(4) and (9) for the Pi

R data and from Eq. (4) and
Appendix A for the Pi

Y↓ and Ps
Y data. Predictions

for the o/i modes are omitted for the reasons stated
in Section 2.2, and are replaced by dashed line
spline fits. Pi

R in Fig. 7a and Pi
Y↓ in Fig. 7b lie

above the critical load data range. Deviations of
the solid lines from the data points may be ascribed
to inaccuracies (from fitting procedures and high-
load nonlinearities) in the bilayer expressions from
Part I used to evaluate the critical load functions.
Implicit in the FEA calculations is the assumption
that the response remains completely elastic in all
materials up to the onset of each damage mode.
Strictly, these calculations are valid only up to the
onset of first damage, i.e. for the lowest of the
curves in Fig. 7. In both systems the predictions
indicate transitions in first-damage modes with
increasing do/d: in the Co-alloy core system (Fig.
7a), top-surface yield in the inner layer at small
do/d or bottom-surface yield in the inner layer at
large do/d; in the alumina core system (Fig. 7b),
yield in the outer layer at small do/d or radial crack-
ing in the inner layer at large do/d. (Radial cracking
in the outer layer actually becomes dominant in a
very small thickness range, do/d� 0.95.) It would
appear that the safest relative thickness region in
which to operate is do�di. Comparing the two sys-
tems, the alumina core is about as susceptible to
radial cracking as the Co-alloy is to bottom-surface
yield. Thus the key to fabricating superior crowns
is to use higher-strength ceramic or harder metal
cores, as well as to maintain approximately equal
outer and inner layer thicknesses.

Experimental validation of the computational
scheme outlined in this study is under way. Rela-
tive fatigue susceptibility of the ceramics [12,13]
and metals [14] is another factor that warrants
further attention in any complete design scheme.
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Appendix A. Correspondence between
effective �∗ functions and real � functions

We may determine real � functions in terms of �∗

functions in Eqs. (1a,b) and (2a,b) by invoking the
requirement that the strains at the interfaces are the
same in the real trilayer and effective bilayer sys-
tems. The i/s terms corresponding to Eq. (2b) are

�i
1 � (Ei /E∗

c )�c∗
1 (A.1a)

�3 � �∗
3 (A.1b)

�i
13↓ � �i

1��3 � (Ei /E∗
c )(�c∗

13 � �∗
3) (A.1c)

��∗
3

�s
13 � �s∗

13 (A.1d)

The �∗ functions may be determined by analogy
with Eq. (2) in Part I, i.e.

�c∗
1 � (1 /B)log(CE∗

c /Es),

(1 � E∗
c /Es � 100)

(A.2a)

�c∗
13 � (1 /D)log(KE∗

c /Es),(1 � E∗
c /Es � 1000)

� (1 /D)log(K), (E∗
c /Es � 1)

(A.2b)

�s∗
13 � 1/G(1 � ME∗

c /Es) (A.2c)

�c∗
3 � 1/g[1 � m(E∗

c /Es)p] (A.2d)

with B = 1.35, C = 1.00, D = 2.08, K = 11.0, G
= 1.74, M = 0.178, g = �1.43, m = 0.46 and p =
0.79.

Analogous functions for the o/i terms corre-
sponding to Eq. (2a) are subject to considerable
inaccuracies, owing to the strong nonlinearities in
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the outer layer (see Fig. 2). Accordingly, those
functions are not included here.

References

[1] Kelly JR. Ann Rev Mater Sci 1997;27:443.
[2] Kelly JR. J Prosthet Dent 1999;81:652.
[3] Lawn BR, Deng Y, Thompson VP. J Prosthet Dent

2001;86:495.
[4] Miranda P, Pajares A, Guiberteau F, Cumbrera FL, Lawn

BR. J Mater Res 2001;16:115.
[5] Willmann G. Adv Eng Mater 2001;3:135.

[6] Lawn BR. Curr Opin Solid State Mater Sci 2002;6:229.
[7] Zhao H, Miranda P, Lawn BR, Hu X. J Mater Res

2002;17:1102.
[8] Chuang T-J, Lee S. J Mater Res 2000;15:2780.
[9] Hsereh C-H, Miranda P. J Mater Res 2003;18:1275.

[10] Lawn BR, Deng Y, Miranda P, Pajares A, Chai H, Kim
DK. J Mater Res 2002;17:3019.

[11] Rhee Y-W, Kim H-W, Deng Y, Lawn BR. J Am Ceram
Soc 2001;84:1066.

[12] Kim DK, Jung Y-G, Peterson IM, Lawn BR. Acta
Mater 1999;47:4711.

[13] Lee C-S, Kim DK, Sanchez J, Miranda P, Pajares A, Lawn
BR. J Am Ceram Soc 2002;85:2019.

[14] Suresh S. Fatigue of materials. Cambridge: Cambridge
University Press, 1991.


	Designing damage-resistant brittle-coating structures: II. Trilayers
	Introduction
	Stress analysis
	Stress relations
	Finite element validation

	Critical loads for damage modes
	Discussion
	Acknowledgements
	Correspondence between effective Sigma* functions and real Sigma functions
	References


